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J. Phys. A: Math. Gen. 22 (1989) 2329-2340. Printed in the U K  

Branching rules for representations of simple Lie algebras 
through Weyl group orbit reduction 

J Paterat and R ,T  Sharpt 
t Centre de Recherches Mathematiques, Universite de Montreal, Montreal, Quebec, 
H3C 337 Canada 
i: Physics Department, McGill University, Montreal, Quebec, H3A 2T8 Canada 

Received 7 February 1989 

Abstract. Two independent algorithms are presented, which together allow the determina- 
tion of branching rules from an irreducible representation of a compact Lie algebra to 
those of a subalgebra (or subjoined algebra). The first gives the subalgebra Weyl orbits 
contained in an algebra orbit. The second gives the irreducible representations of an 
algebra contained in an orbit, and by inversion of a triangular matrix, the orbits contained 
in an irreducible representation. 

1. Introduction 

There are many different ways (Cummins er a1 1989) of finding branching rules (i.e. 
reduction) of an irreducible representation ( I R )  4 ( G )  of a particular simple Lie algebra 
G over the complex number field to I R  of a particular reductive Lie subalgebra or 
subjoined (Patera er a1 1980) semisimple algebra. (Except where explicitly stated, the 
term ‘subalgebra’ includes subjoined algebra throughout this paper.) However, once 
one is interested in methods of general applicability (as to the type of semisimple Lie 
algebras involved) there is only one method left although its implementation may 
proceed in several practically very different ways. The method has three steps: (i)  first 
one has to find the weight system R(4(G) )  of the initial representation +(G), then 
(ii) the weights of R(4 (G) )  have to be transformed into the weights of the subalgebra. 
The result of such a transformation is the weight system R(+(G’)) of the reducible 
representation 4(G’) of the subalgebra G‘. Finally (iii) R(c#J(G’)) has to be sorted out 
into the weight systems of irreducible components of the branching rule. 

The contribution of this paper to the problem of computing the branching rules 
for semisimple to reductive Lie algebras over the complex number field has two distinct 
aspects. 

( a )  Rather than reducing the complete weight system R(+(G))  to R(+(G’)) we 
reduce the subsystems of Q(4(G)), called Weyl groiip orbits, or simply W-orbits O(A), 
A E R(+(G)), to similar subsystems of R(r$(G’)) and subsequently reassemble the 
appropriate subsystems into complete weight systems of the relevant irreducible rep- 
resentations. 

( b )  The second contribution of this paper is showing how, in principle, all necessary 
operations on the weight systems and the W-orbits can be performed in terms of 
generating functions. General procedures for the derivation of the appropriate generat- 
ing functions are formulated. The advantage offered by the generating functions comes 
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firstly from the possibility of computing by hand particular cases of considerable size 
(by developing a generating function as far as needed) and secondly from the global 
information such a generating function provides about the whole problem (integrity 
bases, syzygies, etc). 

The task ( i )  of computing the weight system R(q5(G)), in particular the weight 
multiplicities, using any of the existing recursive methods, imposed practical limits on 
the original implementation of the method. A relatively recent development (Moody 
and Patera 1982) is the possibility of computing multiplicities of dominant weights 
without computing the rest of them for a given representation. That opened the further 
possibility of making the method vastly more efficient by exploiting the decomposition 
of R(4(G))  into W-orbits O ( h ) ,  the multiplicity of a dominant weight A in R(d(G))  
being the multiplicity of the W-orbit O ( h )  in R(q5(G)). The economy occurs when 
branching rules for orbits are calculated separately from branching rules for representa- 
tions; only subsequently are those, with appropriate multiplicities, collected into 
branching rules for representations. A possible alternative to recursive computing of 
weight multiplicities is one of the results of this paper. 

The second step (ii) is efficiently performed by the projection matrices introduced 
by Navon and Patera (1967). Such a matrix has to be calculated only once for each 
algebra-subalgebra pair and then used on any weight system. They are found in 
McKay et a1 (1977) (see also Cummins et a1 1989). 

The last step (iii) is quite easy because it is sufficient to retain and to work with 
the dominant weights offl(+(G')) ,  a small fraction ofthe weight system, each represent- 
ing precisely one W-orbit. That again hinges on the possibility to reassemble the 
W-orbits of G' into whole weight systems of irreducible representations of G'. 

Among the methods for branching rules computations the present approach stands 
in two ways: ( a )  it is the most explicit general solution available, and ( b )  it can be 
applied, at least in principle, to any algebra-subalgebra pair. Its practical applicability 
naturally has some limits. Let us point out here that, if one is interested in branching 
rules for only some classes of irreducible representations, one may extend the practical 
limits to much larger algebras-subalgebras. 

In 0 2 a method of implementing step (ii) above is presented; it utilises the orbit-orbit 
generating function. Section 3 shows how to express a Weyl orbit as a superposition 
of IR; step (iii) above can thus be accomplished. If the IR, and orbits, are arranged, 
say, according to level (Bremner et a1 1985), the transformation matrix from orbits to 
I R  is triangular, and hence easily inverted to express I R  in terms of orbits-step (i) above. 

In the paper we assume that the reader is familiar with weight lattices of semisimple 
Lie algebras and with the action of the corresponding Weyl group on the weights. A 
generic weight is always given by integer coordinates, its 'components', relative to the 
basis of fundamental weights. We often use IR, or irreducible representation, to mean 
the weights of the I R  in question. 

2. Orbit-rbit generating function 

We first define the orbit-orbit generating function then show how to determine it. It 
was first used (for subjoining Sp(6) > SU(4)) by Couture and Sharp (1989). 

The orbit-orbit generating function for an algebra-subalgebra pair is a rational 
function F ( A ,  B )  whose power expansion 
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gives the multiplicity Cab of the subalgebra orbit [b]  in the algebra orbit [a]. Here 
A" and B b  mean II;=' A:, and II:=, BP1 respectively; k and k' are the respective ranks 
of algebra and subalgebra; A, and B, are dummy variables which carry as exponents 
the algebra orbit labels a ,  and subalgebra orbit labels b,, respectively. Orbit labels are 
the components of the highest weight of the orbit. The components of a weight A are 
the coefficients A,  of the fundamental weights M, in the expansion of A :  

A = XtM,h, (2.2a) 

or, alternatively, 

where ai are the simple roots; the orbit labels are non-negative integers. If one or 
more orbit labels vanish we say the orbit is degenerate. 

We first give a general method of evaluating the orbit-orbit generating function 
( $ 9  2.1 and 2.2). In $ 2.4 we discuss the method of elementary orbits, which is simpler 
in most situations, in particular the equal-rank case. 

2.1. The generating function f o r  weights of a Weyl group orbit 

Define the orbit-weight generating function for an algebra of rank k as 

k 
H ( A ,  A)  = C W' n ( 1  - A A - '  

W '  i = l  

where Ai are dummies which carry orbit labels as exponents and hi carry weight 
components A i .  The sum is over Weyl group elements W' (operating on the weight A 
carried by A)  which do not stabilise A. The power expansion of the orbit-weight 
generating function gives the weights contained in each orbit 

H ( A ,  A )  =I A" 1 AACah. (2.4) 
a h  

C,, is one or zero according to whether the weight A is or is not contained in the orbit 
[ a ] .  The orbit-weight generating function is also the orbit-orbit generating function 
for the Cartan subalgebra. As examples we give the orbit-weight generating functions 
for SU(3), SO(5) and SU(4). For SU(3) it is 

A,A,A:A; I 

( I  - A ~ A ' A ; ' ) ( I  - A , A , ) '  
+ 
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The SO( 5 )  orbit-weight generating function is 

A2 A A2 + A,A;'A: + 1 
(1 -AIAl ) ( l  -A2A2) (1  -A2A2) (1 -AlA~ 'A$)  (1 -AlAF'A;)(l-A2Ay1A2) 

A2A;' 
(1 -AlAF1)( l  -A,h;') 

+ A,A;' + 
(1 -A2AF'Az)(l -AI&') 

A2AlAT1 
(1 -AlA,A;2)( 1 - A2AlA;') 

+ A ,  A,A;' + 
(1 - A2Ai;l)( 1 - AlAlA;2) 

AlA2A:Ay1 
(1 -A2A1Ay1)(l -A1Al)' 

+ 

For SU(4) the orbit-weight generating function is 

8 2  E2 Y3 ; Y2E2 I 83 7 2  +- +-+- +- 1 

Y181El  YZ8IE1 Yl8ZE1 Y I 8 l E 2  Y382EI YZ81E2 YZ83&I 

E3  Y383 I Y4 ; Y3E3 I 65 8 4 E 3  +- 8 4  +-+-+- 
Y184E2 Y182E3 Y363El Y484E2 Y362E3 Y285E2 Y184E3 

&4 Y485 Y4&3 Y3&4 I Y486 +- +-+-+- +-+- 
YZ83&4 Y48SE2 Y484E3 Y383E4 Y386E3 Y285E4 y486E3 

Y4&4 I S6E4 Y486E4 

Y465E4 Y386E4 Y4S6E4' 
+- 

To save space, a symbol (y j ,  6, or E , )  in the denominator of a term in (2.7) stands for 
one minus that symbol. The symbols in question, in turn, stand for 

Y1 =ALA1 ~2 = A, A y3 = AlA;'A3 

y4 = AJ;' 8, = A2A2 S2 = A2AlA;lA3 

8, = A2ATl A3 a4 = A2A, A;' = A2AT'A2A;' (2.8) 

8 6 =  E,  = A3A3 e2 = A3A2A;' 

= A3AlAi;l = A3Ay'.  

2.2. General method for orbit-orbit generating function 

The orbit-weight generating function for an algebra may now be converted in two 
steps into the orbit-orbit generating function for a subalgebra. The first step is to 
replace the dummies A which carry algebra weights in (2.3) or (2.4) with new dummies 
B which carry the corresponding subalgebra weights b. We give examples below. The 
second step is to retain that part of the generating function for which the weight 
components bj (exponents of B j )  are all non-negative. They are then subalgebra orbit 
labels and we have the desired orbit-orbit generating function (2.1). 

Let us carry out the steps just described to obtain the orbit-orbit generating functions 
for 

SU(3) = SO(3) 

SU(4) 2 SU(2) x SU(2) x U( 1). 

SO(5) 2 SU(2) SU(4) 2 SU(2) x SU(2) 
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The projection matrices of McKay et a1 (1977) may be used to convert algebra to 
subalgebra weights. In simple cases the prescription can be inferred from branching 
rules for a low I R  of the algebra without turning to the projection matrices. 

For SU(3) =I SO(3) the necessary substitutions in (2.5) are A, + B2,  A*+ 1. Retaining 
the non-negative power part in B then yields the SU(3) =I SO(3) orbit-orbit generating 
function 

(2.9) 
AI 

(1 - A2B2)( 1 - A , ) '  
+ A2 

(1 -A$')( 1 - A2) 
+ 1 

(1 -A$')( 1 -A2B2) 

For SO(5) 3 SU(2) the substitutions in (2.6) are A,  + B4, A2 + B 3 .  Retaining non- 
negative powers of B yields the SO(5) =I SU(2) orbit-orbit generating function 

1 I A2B I A 1 4  
( l -AzB3)( l -AlB4) ' ( l -AlB4)(1-A2B) ' ( l - A l B ) ( l  -A,A:) 

AiA,B A , B ~  
' (1-AlA:)(1-AlA2B) ( l -AlA2B)(1-AlB2)  

A~A,B '  A,A: 
' (1-A,B2)(1-A2B3) ' l-AIA:' (2.10) 

For SU(4) 2 SU(2) x SU(2) (Wigner supermultiplet model) the substitutions in (2.7) 
are A, + BIB2, A2+  B:,A3 + B1B2;  the orbit-orbit generating function is 

1 AlA7B: 
(1 -A,B,B2)(1 -AZB:)(l -A3BlB2) ' (1 -A,A,B:)(l -A2B;)(l -A3BlB2) 

' (1 - A,B,Bz)( 1 - A2)( 1 - AlA3B:)' (2.11) 
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For SU(4) 2 SU(2) x SU(2) x U(1) the substitutions in (2.7) are A I  + B I Z ,  A 2 +  Z 2 ,  A3+ 
B2Z, where Z carries the U ( l )  label. Keeping non-negative powers of B1,  B2 gives 
the orbit-orbit generating function 

1 
( 1  - A l B l Z ) (  1 - A2Z2)( 1 - A3B2Z) 

J Patera and R T Sharp 

A2BlB2 
( 1  - AIBlZ)(  1 - A2BlB2)( 1 - A3B2Z) 

+ 
A ,  B2Z-' 

(1-AlB~Z-' ) (1-A2BlB2)( l -A3B2Z)  
+ 

A A Z - '  
' ( 1  - A ,  B I Z ) (  1 - A2Bl B2)( 1 - A3 BIZ-')  

A A3Bl B2Z-2 
( 1  - AIB2Z-I)(  1 - A,BIB,)( 1 - A3BIZ-I) 

A 2 Z - 2  
( 1  - A l B 2 Z - ' ) (  1 - A 2 Z 2 ) (  1 - A 3 B , Z - ' )  

+ 

+ (2.12) 

It is useful to interpret an orbit-orbit generating function in terms of an integrity basis, 
consisting of a finite number of 'elementary orbits'; an elementary orbit ( a ,  b )  is a 
subalgebra orbit [ b ]  belonging to an algebra orbit [ a ]  and cannot be written as a 
stretched product of lower orbits ( a ' ,  b ' )  ('stretched product' means that algebra and 
subalgebra labels are componentwise additive). Any subalgebra orbit belonging to 
any algebra orbit can be written as a stretched product of elementary orbits. Some 
pairs of elementary orbits are incompatible-they must not appear in the same product. 
There exists a polynomial identity (syzygy) relating them. The elementary orbits and 
the compatibility rules may be read from the orbit-orbit generating function. Thus 
from (2.9) we read the elementary orbits CY = (10,2),  p = (10,0), y = (01,2), S = (01,0), 
with compatibility table 

(a cross means incompatible). In (2.10) the elementary orbits are a = (10,4), P = (10,2), 
y = ( 0 1 , 3 ) ,  S = ( O 1 ,  l ) ,  ~ = ( l l ,  l ) ,  5=(12 ,0) ,  5 '=(12 ,0) .  The compatibility table is 

P Y  6 E C 5 '  
a 

The elementary orbits and compatibility rules for the orbit-orbit generating functions 
(2.11) and (2.12) are easily written down-we omit them here. 
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2.3. Relative position of Weyl chambers of algebra and subalgebra 

A few general statements can be made about orbit-orbit generating functions, based 
on the way the Weyl chambers for the subalgebra line up with those of the algebra. 

When we compare regions of algebra and subalgebra weight space, a region of 
subalgebra weight space, say a Weyl chamber, means the region of algebra weight 
space which projects into the subalgebra region in question. 

The simplest situation is that in which Weyl group chambers of algebra and 
subalgebra 'line up', i.e. each subalgebra Weyl chamber contains only complete algebra 
Weyl chambers ( N /  N'  of them, where N and N' are, respectively, the orders of the 
algebra and subalgebra Weyl groups); each boundary of a subalgebra Weyl chamber 
is also a boundary of an algebra chamber. 

In this paragraph algebra and subalgebra Weyl chambers are assumed to line up. 
Let W be one of the N / N '  elements of the algebra Weyl group which carry the 
dominant algebra chamber within the dominant subalgebra chamber. Then an algebra- 
subalgebra orbit pair ( a ,  b )  corresponding to the term A"Bb in  the orbit-orbit generating 
function can always be written (a,  PWa)  corresponding II,(A, n,B, ) ) ' I ,  where P 
is the projection onto subalgebra weight space. Thus the elementary orbits correspond 
to A, II, B:pwMl'~, i.e. they are the subalgebra orbits contained in the fundamental 
orbits of the algebra. The compatibility rules for elementary orbits can then be stated 
as follows: two elementary orbits are compatible if and only if the two weights W M ,  
and W M ,  can be obtained by the same Weyl element W; in particular, two subalgebra 
orbits belonging to the same fundamental algebra orbit are incompatible. SU(3) 3 

SO(3) and SU(4) 2 SU(2) x SU(2) x U( 1) above are examples of algebra and subalgebra 
Weyl chambers' lining up. A sufficient but not necessary condition for the lining up 
is that algebra and subalgebra have equal rank; for all known maximal subjoint algebras 
that is always the case. For a regular subalgebra, the Weyl chambers line up. 

Examples of cases where algebra and subalgebra sectors do not line up are 
SO(5)  3 SU(2) and SU(4) 2 SU(2) x SU(2) above. When a dominant subalgebra weight 
lies inside a chamber of algebra weight space that is only partly in the dominant 
subalgebra sector, it cannot be compounded from elementary orbits belonging to 
fundamental algebra orbits; hence composite elementary orbits (more than one algebra 
label non-zero) arise, as in the generating functions (2.10) and (2.11). 

( P W M , )  

2.4. Method of elementary orbits 

Usually it is easier to find the orbit-orbit generating function heuristically by examining 
low algebra orbits to find the elementary orbits and their incompatibilities, rather than 
using the orbit-weight generating function (2.3). With the help of existing tables for 
branching rules (McKay and Patera 1981) and orbit multiplicities (Bremner et a1 1985), 
one proceeds by increasing level within each algebra congruence class as follows: 

(i) from known branching rules write the algebra I R  corresponding to the orbit to 
be decomposed as a superposition of subalgebra IR;  

(ii) write the subalgebra I R  as a sum of subalgebra orbits, and the algebra orbits 
in the I R  in question other than the orbit to be decomposed, as a sum of subalgebra 
orbits. The result is the algebra orbit in question decomposed into subalgebra orbits. 
Alternatively, if tables are unavailable, use projection matrices to convert the weights 
of the algebra orbit to be decomposed into subalgebra weights and retain those in the 
dominant subalgebra sector. 
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When algebra and subalgebra ranks are equal the procedure is particularly simple. 
Again, using branching rule tables, write the algebra IR,  corresponding to the desired 
algebra orbit, in terms of subalgebra IR.  Now note the distance squared from the 
origin of the algebra orbit in question (the distance squared (or 'scalar product' (sP))) 
is tabulated by Bremner et al (1985). Ignore smaller orbits in the algebra I R ;  on the 
other side of this equation, retain only subalgebra orbits with the same distance squared 
as the algebra orbit-that means keeping only the outside orbit of each IR,  and that 
only when it has the correct distance squared. The scale of subalgebra weights may 
have to be adjusted to match that for algebra weights. According to the discussion of 
8 2.3 the elementary orbits are all found in the fundamental algebra orbits. 

We illustrate the procedure for F43 B4. From branching rule tables (McKay and 
Patera 1981) we find 

(00201) 24 3(0ob1,+(10200)+(00"00) 16 8 

(10400) 3 (0ib0)+(00201, 

(00610) 3 (10601) + (OilO) + ( O i b O )  + (00201) + (10200) 

(oiho) 96 2 ( idzlo)+(oi8i)+(io6oi)+(o~io)+(o~oo) .  96 

24 24 

96 64 32 

The number below an I R  is the size (number of weights) of the corresponding orbit; 
the number above is the distance squared of the corresponding orbit, divided by 2 for 
B4 to make the scale agree with that of F4. Following the discussion above we find 
the elementary orbits to be 

a = (1000,0100) 

c = (0010,1001) 

b = (0100,1010) 

d = (0010,0010) 

e = (0001,1000) f =  (0001,0001). 
Since a and b are the only orbits in their respective fundamental algebra orbits, they 
are compatible with each other and with all the rest. In the algebra orbit (001 l ) ,  whose 
distance squared and orbit size are respectively 14 and 192, the candidate orbits are 
ce = (2001), with distance squared 14 and orbit size 64, cf= (1002) with distance squared 
14 and orbit size 64, de = (1010) with distance squared 12, orbit size 96, and d f =  (0011) 
with distance squared 14, orbit size 64. Only the pair de are incompatible, with distance 
squared too small; as a check, one notices that the dimensions of the subalgebra orbits 
add up to the dimension of the algebra orbit. The F43 B4 orbit-orbit generating 
function can now be written down: 

1 
( 1  -A3&)(1 -A4B4) 

(2.13) A& 
( 1  -A3BiB4)(1 -A4Bi) 

+ 
( 1 

( 1  -AiBd( l  -A2BiB3) 

Bl  B4 + 
( 1  -A4B4)(1 -A3BiB4) 

The correspondence with the elementary orbits above is 
AlB2-a  A2BIB3-b A3 B3 - d 
A4B4 -f A3BlB4- c A4B, - e. 
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3. Orbits and IR 

We show how a set of weights with Weyl symmetry can be represented as a superposition 
of IR; the weights are then taken to be those of a Weyl group orbit. 

Let A, be a set of weights of a semisimple algebra and c, is the multiplicity of the 
weight A,. We suppose the weights have Weyl symmetry. Then the weights can be 
written as a superposition of the weights of I R :  

,y4 is the character of the I R  ( a )  and g,  is an integer which we continue to call the 
multiplicity of ( a )  even if now it can take negative integer values as well as positive 
ones; as usual the dummies A carry weight components as exponents. 

To find g,  we use Weyl's character formula 

k'4 64/60 (3.2) 
where 6, is the Weyl characteristic function: 

The sum is over Weyl reflections W, (-l)w is the determinant of the matrix of W, i.e. 
*l according to whether W is a product of an even or odd number of reflections, and 
R is half the sum of the positive roots, or the highest weight of the I R  with all Dynkin 
labels unity. to is the characteristic function of the scalar I R  (with a = 0). Then 

(3.4) 

Now 
of A' in 

has just one term, AatR, in the dominant Weyl sector, so g,  is the coefficient 

We will take A, in (3.1) to be the weights of the Weyl orbit [A].  Then g4 is the 
multiplicity of the IR ( a )  in the expansion of the orbit [A] .  

The sum in (3.5) can be visualised graphically in the spirit of a Speiser (1962) 
diagram. Plot the weights of the orbit and reflect each if necessary so that it falls in 
the dominant sector, reversing the sign with each reflection. The reflection hyperplanes 
are A i  = -1, i = 1 , 2 , .  . . , 1 (and their reflections in each other). Ignore a weight that 
lies on a reflection hyperplane. The resulting weights, interpreted as I R ,  are the ones 
which appear in the expansion of [A] .  Figure 1 shows the diagram for the orbit [2,1] 
of G,. It decomposes into the I R  (21) + (03) + (02) - (04) - (12) - (01). 

A second graphical method is to plot the dominant weight A of the orbit and 
superpose eo on it so that its dominant weight ( 1 ,  1 ,  . . . , 1) falls on A. Ignore a weight 
that lies on a reflection hyperplane, and reflect each of the other weights until it lies 
in the dominant sector, reversing the sign with each reflection. The reflection planes 
are the same as in the preceding paragraph. Again the resulting weights, interpreted 
as IR, are those which appear in the expansion of the orbit [A] .  However, in the 
present case, each I R  appears with multiplicity equal to the order of the Weyl group 
divided by the orbit size (number of weights of the orbit) of A. 

Generating function methods can be used to treat the orbit-rR problem. One has 
only to multiply the orbit-weight generating function H ( A ,  A) ,  (2.3), by t O ( A ) R - '  and 
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Figure 1. Decomposition into IR of the G, orbit [2, 11. The weights of the orbit are labelled 
1 , 2 , .  . . , 12. The reflection lines intersect at (-1, -1). The weights 4, 5 ,  10, 11, 12 are 
reflected into the dominant sector to the corresponding primed weights where they, and 
1, are interpreted as IR.  A closed circle means plus (even number of reflections), an open 
circle minus (odd number of reflections). 

retain non-negative powers of -\ in the result. Then one gets the orbit-IR generating 
function J (  A, A )  whose power expansion 

J(A, A)  = H(A,  A)&,(A)R-'I,,+= A"Ah~c, , ,  
a.h  

gives the multiplicity c0,* of the IR ( A )  in the expansion of the orbit [ a ] .  
For example, the S U ( 3 )  orbit-IR generating function turns out to be 

(3.6) 

and the SO(5) orbit-IR generating function is 

AIA:-Al AlA:+A:A2A2-AIA:Al -AlA2A2 + + -A:. (3.8) 1 - A2A2 1- AlAl 

The orbit [ a ]  contains only IR of equal or lower level; hence the matrix from the 
orbit basis to the I R  basis is triangular. It is therefore easy to invert it and obtain the 
orbit content of an I R .  Thus the problem of weight multiplicities of an IR, usually 
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solved by Freudenthal's recursive technique, or else by use of Weyl's or Demazure's 
character formula, is rather easily solved, working upwards by level within each 
congruence class. A similar approach has been applied to the Kac-Moody algebra 
A\'' by Kass (1986). 

Sometimes the Orbit-iR generating function can be inverted to obtain the IR-orbit 
generating function whose power expansion gives the multiplicities of orbits in IR. If 
J(A,  A) and K(A,  A )  are the orbit-rR and IR-orbit generating functions, they satisfy 
the equation 

I 

J ( A , A ) K ( A - ' ,  A')I ,"=n (1 - A # A ; ) - ' .  (3.9) 
I 

We illustrate the procedure with SU(2), whose orbit-1R generating function is ( 1  - A 2 )  x 
(1 -AA)- ' .  Then (3.9) for K ( A ,  A )  becomes 

(1  - A Z ) K  ( A ,  A')  = (1 - AA')-'  

from which we find 

K(A,  A )  = [( 1 - A 2 ) (  1 -AA)]- ' .  

rR-orbit generating functions for SU(3) and SO(5) are given by Michel et a1 (19883. 

4. Concluding remarks 

The idea that the Weyl group is a useful tool in applications of representation theory 
of semisimple Lie algebras is not new, but until recently it might have been difficult 
to make a convincing case. That was due partly to the fact that, in most applications, 
only representations of relatively small dimension were of importance and that the 
ranks of relevant semisimple Lie algebras were modest so that most problems could 
be solved without much sophistication. By now, of course, the situation is quite 
different in that respect. 

A truly systematic exploitation of the Weyl group in applications became possible 
when it became possible in practice to calculate the multiplicity of any W-orbit in the 
weight system of any representation, at least for the representations which may be of 
interest in the forseeable future. Indeed, until Moody and Patera (1982), the practical 
limit of the existing recursive methods were representations of several thousands for 
ranks, say 8, even for the largest mainframe computers. 

In this paper the task of computing the branching rules makes use of the fact that 
the multiplicities can be calculated or looked up (Bremner et al 1985) separately 
whenever needed. It further splits the problem into two smaller ones: computation of 
branching rules for the W-orbits of a given simple Lie algebra to W-orbits of a maximal 
subalgebra (subjoined algebras are included as well), and subsequent collecting of the 
appropriate numbers of appropriate W-orbits into complete weight systems of rep- 
resentations of the subalgebra according to the known multiplicities. We give an 
explicit prescription for writing a Weyl orbit as a superposition of irreducible rep- 
resentations and, by inversion of a triangular matrix, writing an irreducible representa- 
tion as a superposition of Weyl group orbits. 

Exploitation of generating functions for both steps of our computations adds a 
further efficiency to the procedure, especially for the calculation of algebra W-orbit to 
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subalgebra W-orbit branching rules. For the equal-rank case we give explicit easy-to- 
implement instructions for the construction of the complete orbit-orbit generating 
function. Even when the complete orbit-orbit generating function is too complicated 
to write down, it may be possible to convey the same information by listing the members 
of the integrity basis (elementary orbits) and their syzygies (incompatibilities). In still 
more complicated cases one is typically interested in branching rules for only highly 
degenerate representations of an algebra; then only a small subset of the integrity basis 
and the corresponding syzygies are required. 
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